
3fP

UNIVERSITY OF HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Houston, Texas 77004

iNASA-CI3-18ol40) DATAEASE I E I E E F A C E S ON N87- 166 56
EjASAgS H E T E R O G E N E C U S C I S T B X E U I E C CATABASE
SYSTEH Semiannual ReFcrt, 11 Eft. 1987

f

(Houston Univ .) 35 p C S C L 05B U n c l a s
G3/82 43372

Semi Annual Report to
National Aeronautics and Space Administration

on

Database Interfaces on NASA’s Heterogeneous
Distributed Database System

Shou-Hsuan Stephen Huang
Department of Computer Science

University of Houston
Houston, Texas 77004

Feburary 11, 1987 Grant NAG 5-739
i

Contents

Semi Annual Report

Page 1

Appendix 1: “Database Interfaces in Heterogeneous Database Manage-

ment Systems”, Technical Report #UH-CS-87-1, Computer Sci-

ence Department, University of Houston, January 1987.

Appendix 2: Pascal Template for Define Cluster

Appendix 3: Pascal Template for Drop Cluster

.
Appendix 4: Pascal Template for Install Cluster

Appendix 5: Pascal Template for Selection-Projection

Page 2

Semi Annual Report

1. Summary of Current Research

The purpose of DAVID interface module (Module 9: Resident Primitive Pro-

cessing Package) is to provide data transfer between local DAVID systems and res-

ident DBMSs. We shall summarize the result of current research here. A detailed

description of the interface module can be found in Appendix 1.

In order to transfer database from resident DBMS to DAVID (or vice versa),

we need to generate programs (called database access programs here) that can

access both DBMSs. The purpose of the Resident Processor (Module 9.2) is

to generate these database access programs. These database access programs can

be written in (1) a host programming language with embedded database access

statements for both database systems; or (2) a system command program with

embedded data manipulation statements of the resident database system.

One of the most important objectives of the design of the interface module is

to build the interface module for as many DBMSs as possible. To achieve the goal,

we have to separate the knowledge about the resident DBMSs from the Resident

Processor. So, our design of the interface module *. includes two major components:

(1) a Template Base that contains a collection of templates (one for each type

of primitives), and (2) a Resident Processor program that generates database

access programs (one for each GSQL primitive).

Page 3

Since the Resident Processor does not contain any knowledge about the resident

DBMS, we need only one Resident Processor. This is a significant improvement

from the initial design which calls for as many Resident Processors as the number

of primitive types. The structure of interface module is illustrated in Figure 1 below.

In the last six months, we have constructed several Pascal templates which

are included in Appendices 2-5. The Resident Processor program is also developed.

Even though it is designed for the Pascal templates, it can be modified for templates

in other languages, such 21s C, without much difficulties. The Resident Processor

itself can be written in any programming language.

Since Module 5 routines are not ready yet, there is no way to test the interface

module. However, simulation shows that the database access programs produced

by the Resident Processor do work according to the specifications.

I

DAVID
Directory

-i

Page 4

Figure 1: Interaction of Components of the Interface Module.

4

GSQL
primitive

Resident Primitive Processing Package I
Y-l database

access
Program

Resident

.I

/u\
(5) (..-.I

Page 5

2. Proposed Research

A renewal proposal to continue the research on this project has been submitted

to NASA. The project will be extended a t no cost pending the approval of the grant

application. Thus, we outline the goals for the next year below:

rn completing the Template Base with additional primitives;

converting the Pascal programs and templates into C;

rn writing documentations and reports on the design and implementation;

integrating the interface module with the routines Module 5 of the DAVID

System;

m analyzing the performance of the interface module;

rn developing interfaces with other DBMSs such as RIM.

Some of these tasks will be performed in conjunction with the researchers at SAR.

We have produce a technical report about the general design of the interface

module. Two graduate students wrote their master theses on the topic of database

interface. One of them is continuing her work at SAR.

..

Appendices

Appendix 1

.

Database Interfaces in Heterogeneous
Database Management Systems

Shou-Hsuan Stephen Huang'
and

I-Hui (Irene) Lee2

Technical Report #UH-CS-87-1 January 1987

.
Department of Computer Science

University of Houston
Houston, Texas 77004

' This research is supported by a NASA Grant NAG 5-739.

Current address for I. Lee: Science Appbcation Research, 4400 Forbes Blvd.,
Lanham, MD 20706.

Page 1

Abstract

This paper addresses the problem of database interface between a DBMS and
the DAVID DBMS. DAVID (Distributed Access View Integrated Database) system
is a distributed heterogeneous DBMS under development by National Aeronautics
and Space Administration (NASA). Each site of the distributed system has its
own local database system(s) together with a common DAVID system. Database
can be moved from one local database system to another via the DAVID system
which is capable of storing databases of all three models (relational, hierarchical,
and network). Interface occurs when a database is moved from a local system into
DAVID or vice versa.

Oracle, a relational DBMS, is used as an example of the local DBMS in this
research. We present two different ways to interface these two DBMS’s. The first
method (called HLI Approach) uses the Host Language Interface (HLI) facility of
the two systems to retrieve and store data. The second method (called A r k Ap-
proach) does not use HLI facility, thus works for arbitrary database systems includ-
ing DBMS’s for microcomputers. Data are retrieved into a temporary file through
the SQL interface of Oracle. A second program analyzes the data and stores them
into DAVID by calling DAVID routines. .

In order to generate the interface module efficiently, we use a template for each
type of the queries in both approaches. A template is either a Pascal program with
special commands embedded in it or a system command program that activates
Oracle UFI interface and other program modules. The design of the templates
will be discussed in detail. The method developed here may be used for interface
between other systems.

Page 2

1. Introduction

A distributed database is a database that is not stored in its entirety at a

single physical location, but rather is spread across a network of computers that are

geographically dispersed and connected via a communication link. A distributed

database system is a system in which a user can access distributed database stored

at any site of the network 11, 2, 71.

A distributed database may be stored in many database systems at many sites.

If the systems are homogeneous, i.e., each site is running that same Database

Management System (DBMS), the software task is relatively simple. Data can flow

from one DBMS to another DBMS without changing its model and format. *If the

systems are heterogeneous then some modifications must be done before data can

be moved from one DBMS into another.

This paper addresses the problem of database interface [6], i.e., how to

evaluate a query involving one (or, in the case of join, two) DBMS and store the

result into another DBMS at the same site. For example, we may want to retrieve

a table from a relational DBMS and store the result in a hierarchical DBMS.

In a heterogeneous distributed DBMS, we need an interface module for each

pair of different DBMS's. If there are n differmt DBMS's in the distributed system,

we need Ojn') such interface modules. One way to reduce the number of interface

modules is to have a common DBMS on top of all local DBMS's involved in the

system. Thus, we need only n. interface modules, one for each different DBMS.

Page 3

Under this assumption, the interface is between a particular DBMS and the common

DBMS (both at the same site). To move a database from one local DBMS to

another, it must be transferred via this common DBMS.

Throughout this paper, we shall use Oracle DBMS as the local DBMS to be

interfaced with the common DBMS. We choose DAVID system as an example of the

common DBMS. DAVID (Distributed Access View Integrated Database) System is

a distributed heterogeneous DBMS under development by National Aeronautics and

Space Administration (NASA) [3, 4, 51. It is built on top of existing DBMS’s. A

brief description of the DAVID system is given below.

The DAVID system is capable of storing databases of all three data models-

relational, hierarchical and network. The main data object in the DAVID system

.

is called a cluster. A cluster is a collection of one or more tables; and a table

is a collection of zero or more rows. However, the domain of the attributes is

more general than that of a relational system. The attribute values can be simple

(atomic) or another table instance. Thus, a link in hierarchical or network model

can be implemented as a “sub-table” within a DAVID clusters.

The structure of the retrieval statement in the DAVID system is a general-

ization of that of SQL. It produces a set of (result) clusters from a set of (source)

clusters. The SELECT clause specifies (defines) the clusters selected. The FROM
-.

clause specifies the cluster(s) to select from. The WHERE clause specifies the con-

ditions for the selection and may be omitted. Notice that the clusters selected do

not have to have the same structure as that of the underlying cluster instance.

Page 4

For example, the following statements create a hierarchical cluster deptstaf f from

a relational cluster registrar which is physically stored in Oracle DBMS as an

Oracle table.

CREATE ACTUAL CLUSTER deptstaff
SELECT (dept, staff) as deptstaff

(id, name) as staff
FROM registrar
WHERE;

The CREATE ACTUAL CLUSTER clause specifies that the resultant cluster in-

stance will be saved in DAVID DBMS with the given name. Without it, the cluster

will only be displayed but not saved.

In Section 2, we shall describe how the interface module between Oracle and

the DAVID system works with two different approaches. Section 3 shows the design

of the templates used in the interface module. Conclusions and discussions are given

in the last section.

2. Interface Between Oracle and DAVID

The interface module is activated when it receives a primitive query from the

DAVID system requesting a database transaction that involves both DAVID and

Oracle. The most common primitive is selection-pro jection which retrieves data

from a cluster stored in the Oracle DBMS and stores the result into the DAVID

DBMS. Semi join primitive joins a cluster stored in the Oracle DBMS and a DAVID

..

Page 5

cluster stored in DAVID into a new cluster stored in the DAVID DBMS. Store-

to-database selects data from DAVID and stores them into Oracle.

Definitions may also be transfered from one system to another. Install prim-

itive allows users to store the definitions of existing Oracle databases into DAVID.

Define primitive defines an equivalent DAVID database in Oracle.

In addition, there are Drop, Insert, Delete and Update primitives. Unless

otherwise stated, we shall use selection-projection as the primitive in the following

discussion. That is, data is transfered from Oracle to DAVID.

Assume that both DBMS’s provide their own Host Language Interfaces (HLI’s)

through certain programming languages. We can write a, say Pascal, prograp that

calls Oracle routines to obtain data from Oracle and put them in host program

variables. Then these data can be manipulated and stored into DAVID DBMS

according to the new cluster definition. In our case, this is done through DAVID

routines with proper parameters. This is called the HLI Approach [6]. In the

HLI Approach, we have to use a program in a host language. The result is stored

into the DBMS directly.

The second approach is called the Arbi Approach because this approach does

not use the HLI routines. Thus, it works for arbitrary database systems including

those on microcomputers. This method is divided into two phases.

I .

Phase k Log on to DBMS and use the interface provided by the DBMS (such as the

User-Friendly Interface of Oracle) to retrieve data. Store the result of the retrieval

Page 6

into a temporary file, say Temp.dat.

Phase II: Use a (say Pascal) program to open the temporary file temp.dat and store

the data into DAVID by calling DAVID routines one record at a time according to

the definition of the result cluster.

In the Arbi Approach, we are using a “program” which consists of (1) oper-

ating system commands to bring up the DBMS; (2) database statements (such as

SQL) to access the database; and (3) more system commands to execute the Phase

I1 program.

In both cases, we need to generate a program for each primitive query based

on the information provided in the primitive and system directory. This Is not

trivial since even a simple Pascal program that calls Oracle routines is not short.

Instead of generating programs that are very similar whenever a particular

type of primitive is received, we can group the common parts of the HLI program

together. These program skeletons (called templates) depend on the primitive

types but are independent of the actual primitive instances. When a particular

primitive is to be evaluated, we first find the corresponding template and try to

fir1 the template with information available at that time (such as the names of the

clusters to be selected from). -.

Since the templates are independent of any particuiar instance of the primi-

tives, they do not know a lot of information. For example, they do not know the

number of tables in a cluster, or the number of attributes in a particular table.

Page 7

These information are available only after the actual primitive is received. So there

must be some way to specify certain constructs of the template based on the actual

primitive. For example, the number of variables to be DEFINEd in Oracle depends

on the SQL statement contained in the primitive. So the template has to provide

the syntax for the DEFINE routine and specify that it be repeated as many times

as the number of columns in the SQL statement.

The detail design of the templates will be discussed in the next section.

3. Template Design

In order to make a template general enough, we have to use some Special

commands in the template. We shall discuss three types of commands here. These

commands begin with a special character '@' and followed by a command name.

[11 Substituting Commands: These commands substitute command names

with information obtained from the primitive or system directory. For example,

in order to log on to both DBMS's, there are certain information that have to be

provided such as Oracle user-id and password. In the template, whenever we need

such information, a command such it9 QOuserid and QOpassword will be used.

The general syntax for a substituting colmmand is:

QCname > [-<sequence number: 3

where <name> is a string of letters. The sequence number is used when there are

more than one instances to be substituted. For example, we may have to use table

Page 8

names of a cluster which consists of three tables. They will be called QTablename-1,

QTablename-2, and QTablename-3. In fact, these sequence numbers are generated

by using repeating commands discussed below.

(21 Repeating Commands: In many situations, a certain string or statements

in a template have to be repeated many (but unspecified) times. The repeating

commands identify the string and determine the number of time to duplicate the

string.

The syntax of a repeating command is given below:

Qbegin<name>[(<separator>)l
string to be repeated

cPend<name>

When a string is to be repeated n times, a separator will be used n - 1 times to

separate them. The separator can be one of the following: blank (default), “,”, “;”,

or “OR” depending on the syntax.

If the <name> is “cluster”, the string has to be repeated for the number of

clusters involved in the FROM or SELECT clause. For Qbegintable, the string

has to be repeated for as many times as there are tables in a given cluster. Most

of the time, there is a three-level nesting of commands of the form cluster-table-

..I column.

There are two numbers associated with a repeating group: an index and a

sequence number. The index is an integer indicating the number of times the

string has to be repeated. It is initialized to one whenever the repeating command

Page 9

is encountered. (Since repeating commands may be nested, the same repeating

group may be encountered more than once in a template.) The index is incremented

whenever it corresponding @end command is reached.

The sequence number, on the other hand, is a cumulative index. It works

like an index but does not reinitialize to one. So it represents the actual number

of times a string has been repeated whereas the index is relative. If there is a

substituting command (say, @xxx) in the string within a repeating group, then the

command name will be appended by the sequence number of the repeating group.

Thus the command name plus the sequence number (@xxx-i) is unique. The unique

identification allows us to perform the substitution properly.

The index of a repeating group can also be used inside the repeating group.

Detail of the indexing commands will be discussed in the next subsection.

[3] Indexing commands: The index of a repeating group may be accessed by

@i where i indicates the repeating group by its level of nesting with @1 referring

to the outermost repeating group.

With the three types of commands defined above, we can describe the pro-

cess of converting a template into a program. The interface module consists of a

program that transforms the template into a program. The transformation process

is divided into two steps (logically): First, the repeating commands are evaluated.

The indexes and sequence numbers are inserted into the template at this time. Then

the substituting commands are replaced by their contents.

-.

Page 10

A simple example using Arbi Approach is given below. This template defines

tables in Oracle given a cluster definition in DAVID. We assume the cluster consists

of three tables S, P and SP with 3, 4 and 2 columns respectively. In this case, the

transformation program gets information from the primitive about the cluster name.

Then it gets the definition of the cluster from the DAVID system dictionary.

Te mplat e be fore Transjo r mat ion:

$uf i
QOUSERID/QOPWD
QBEGINTABLE

create table (DTABLENAME (
(DBEGINCOLUMN(,)

(DCOLUMN (DCTYPE (@LENGTH)
(OENDCOLUMN) ;

(DENDTABLE
ex i t

Template after Repeating:
$uf i

QOUSERID/@OPWD
create table QTABLENAME-1 (

@COLUMN-1 (DCTYPE-1 (@LENGTH-1).
@COLUMN-2 QCTYPE-2 (QLENGTH-21,
(DCOLUMN- 3 @CTY PE-3 (QLENGTH-3)

1;
create table QTABLENAME-2 (

(DCOLUMN-4 (DCTYPE-4 (@LENGTH-4).
@COLUMN-5 OCTYPE-5 @LENGTH-5).
@COLUMN-6 QCTYPE-6 ((DLENGTH-6).
QCOLL!MN-? QCTYPE-’7 (QLENGTH-’7)

1;
create table (DTABLENAME-3 (

(DCOLUMN-8 QCTYPE-8 (@LENGTH-8).
@COLUMN-9 OCTYPE-9 (@LENGTH-9)

Page 11

1;
e x i t

Template after Transformation:
$uf i

coscl23/abcdefgh

create table s (

sname char (10).
sno number (4).

c i t y char (IO)

> ;

create table p (

pno number (6).
pname char (10).
c i t y char (10).

co lo r char (6)
1;
create table sp (

sno char (4).

pno char (6)

1;
e x i t

The next example shows how several tables are installed into DAVID (as a

cluster) using suppliers-parts example. The spool command sends the output from

the retrieval statement to a file for Iater processing. The file is assigned a unique file

name baaed on the primitive. A second program, install.exe in this case, accesses

the temporary file and then converts the definitions of the three tables into the

definition of a cluster. Then the cluster definition is inserted into the DAVID
-.

system dictionary.

Template before 7kansformation:
$uf i

Page 12

QOUSERID/QOPWD
spool QTEMPFILE
select tname, cname, coltype, width
from col
where

QBEGININSTALL (OR)
tname = '(DINTABLE'

QENDINSTALL :
exit

$run install.exe
QTEMP F I LE

Template aft e r Repeating:
Sufi

QOUSERID/(DOPWD
spool QTEMPFILE
select tname, cname, coltype. width
from col
where

tname = 'QINTABLE-1' OR
tname = 'QINTABLE-2' OR
tname = 'QINTABLE-3 ' 9

exit
$run install.exe
(DTEMPFILE

Template after Transfor mation:
$uf i

coscl23/abcdefgh
spool or12345
select tname. cname, coltype. width
from col
where

-.

tname = 'S' OR
tname = 'P' OR
tname = 'SP' ;

exit

.

Page 13

$run install.exe
or12346

The third example uses HLI Approach. Since a template for HLI approach

is very large in size, we can only show an abbreviated (and somewhat simplified)

version of the template.

Select ion- Project ion Template:
.
Cons t

OUID = 'QOUSERID';
OPWD = 'OOPWD';

. . . .
Var

OBEGINSVAR
sOSVAR: string20;
rOSVAR: string20;

OENDSVAR
. . .
Begin

. '
(OBEGINSVAR

odfinn (curs, (Ol, sOSVAR, 20, I) ;
(OENDSVAR
. ,
OBEGINCLUSTER

gsql-run (vca, def ine(D1, flag, result(O1) ;
. . . . '

-. QBEGINTABLE
tablename := 'OTABLENAME';
OBEGINCOLUMN

COLUMN : = '@COLUMN ' ;
bindcolumn (cva, cca, tablename, column,

rQSVAR, @TYPE. @LENGTH);

Page 14

.... (
QENDCOLUMN

OENDTABLE
open (fcbl, 'fOl.dat*, new);
rewrite (f Ql) :

QENDCLUSTER
...... *

4. Conclusions

Two approaches to interface databases in a heterogeneous distributed system

is introduced in this paper. Both methods use templates to build programs for the

transformation of a database from one DBMS to another.

We summarize some of the important features of the interface design. (1) The

commands introduced in this paper can be used in both types of templates-HLI

and Arbi approaches. (2) The commands are independent of the host programming

languages. We use Pascal as the host language here. To change to a different host

language, the same commands can be used without much change. Some extensions,

such as adding a different separator in repeating commands, may be necessary. (3)

The commands can be used for any type of DBMS's. (4) For HLI approach, the

program to transform the templates into database access programs is independent

of the templates. We need only one program module for all HLI templates. ..

Page 15

References

[l] C. J. Date: An Introduction to Database Systems, Vol. 1 ,4th ed., Addison-Wesley,

1985.

[2] S. Ceri and G. Pelagatti: Distributed Databases: Principles and Systems, McGraw-

Hill, 1984.

[3] B. Jacobs: On Database Logic, Journal of ACM, 29, 2, pp. 310-332, 1982.

[4] B. Jacobs: Applied Database Logic, Vol I: Fundamental Database Issues, Prentice-

Hall, 1985.

[5] B. Jacobs: Applied Database Logic, Vol II: Heterogenous Distributed Query Pro-

cessing, Prentice-Hall, to appear.

[6] I. H. Lee: Database Interface Between Oracle and DAVID: A Host Language In-

terface Approach, M.S. Thesis, The University of Houston-University Park, De-

cember 1986.

[7] J. Ullman: Principles of Database Systems, 2nd ed., Computer Science Press,

1982.

Page 16

Appendix 2: Template of Define Cluster

$ui i

QBEG I N TABLE
Create
TABLE QTABLENAME (OBEGINCOLUMN-C OCOLUMN QTYPEC (OLENGTH) QENDCOLU") ;
OENDTAELE
e x i t

QOUID/QOPWD

Page 17

Appendix 3: Template of Drop Cluster

8ui i
QOUID/QOPWD
QBEGINTABLE drop table QTABLENAME;
QENDTABLE
e x i t

.

..

Page 18

Appendix 4: Template of Install Cluster

Sufi
OOUID/OOPWD
epool OTEMPFILE
select tname , cname , coltype , width from col
where OBEGININTABLE-0 tname = 'QINTABLE' OENDINTABLE ;
exit

$run install. exe
QTEMPFILE

..

Page 19

Appendix 5: Template of Selection Projection

Program SelMulPro j (input, output) ;
CONST

EndOfTabie = 4;
(* ORACLE userid and password *)
UidPwd = 'QOUID/QOPWD';
(* DAVID uid and prd *)
UID = 'QDUID';
PWD = 'ODPWD';
(* DAVID result name *)
OBEGINCLUSTER RESULT01 = 'QCLUSTER'; QENDCLUSTER

TYPE
string5 = packed array 11. -51 of char;
stringlo = packed array 11. .lo] of char;
string20 = packed array [l. .20] of char;
string15 = packed array [1..15] of char;
string120 = packed array [I. .120] of char;
string400 = packed array [l . .400] of char;
VstringlOO = Varying [loo] of char;
vcaType = Record

code : integer;
others : string5;

end ;
CcaType = string5;
GcaType = string5;
SccaType = string5;
SourceType = VstringlOO;
ViewNameType = Vstring100;
UidType = stringlo;
PasswdType = stringlo;
QueryType = string400;
FlagType = string5;
IdstringType = string5;
TableNameType = string20;
ColumnType = string20;
ProgvarType = string20;
ProgTypeType = integer;
Ptr-Vca = fVcaType;
Ptr-Gca = fGcaType;
Ptr-Cca = fCcaType;
ptr-scca = fsccatype;
word = [word] -32768. .32767;
byte64 = array [I. .32] of nerd;

- r

VAR
i, j , k : integer;

Page 20

(* CURSOR Area and SQL Communications Area *)
CURS, SQLDCA: byte64;
(* DAVID Variables *)
duid : uidtype;
dpwd : passwdtype;
vca : VcaType;
pvca : Ptr-Vca;
cca : CcaType;
pcca : Ptr-Cca;
gca : GcaType;
pgca : Ptr-Gca;
scca : SccaType;
source : SourceType;
ViewName : ViewNameType;
flag : FlagType;
idstring : IdstringType;
tablename : TableNameType ;
column : ColumnType;
progvar : ProgvarType;
proglength : integer;
(* ORACLE query and Result Definition *)
query : QueryType;
QBEGINCLUSTER defineol: QueryType;
COI : ptr-cca;
001 : ptr-scca;
fQ1 : TEXT; QENDCLUSTER
(* Source and Result Variables *)
QBEGINSVAR BOSVAR : packed array [1..20] of char;
rQSVAR : packed array [1..20] of char; OENDSVAR

Procedure gsql-connect

Procedure gsql-run

Procedure gsql-compile

Procedure gsql-eval

Procedure asgcluster

(uid : UidType;
passwd : PasswdType;
pvca : Ptr-Vca;
viewname : ViewNameType); extern;
(vca : VcaType;
query : QueryType;
flag : FlagType;
source : sourcetype) ; extern;
(vca : VcaType;
pgca : Ptr6ca;
query : QueryType;
flag : FlagType;
idstring : IdstringType) ; extern;
(vca : VcaType;
gca : GcaType;
flag : FlagType;
idstring : IdstringType); extern;
(vca : VcaType;

.

Page 21

Procedure bindcolumn

Procedure aegsubclueter

Procedure scrinsert

Procedure deasgncluster

Procedure gsqldrop

Procedure logoff

Procedure rollback

(* ORACLE Procedures *)

pcca : Ptr-Cca;
source : SourceType;
typ : char); extern;
(vca : VcaType;
cca : CcaType;
TableName : TableNameType;
column : ColumnType;
progvar : ProgvarType;
progtype : integer;
proglength : integer) ; extern;
(vca : VcaType;
cca : CcaType;
scca : SccaType;
source : SourceType); extern;

pcca : ptr-cca;
scca : ptr-Scca); extern;

pcca : Ptr-Cca); extern;

pgca : Ptr-Cca); extern;

pvca : Ptr..Vca;
viewname : ViewNameType) ; extern;

(vca : VcaType;

(vca : VcaType;

(vca : VcaType;

(uid : UidType;

(vca : VcaType); extern;

Procedure Olon (Var OSQLDCA : byte64;
OUId : stringl5;
OUIdLen : integer) ; EXTERN;

Procedure Oopen (Var OCURS : byte64;

Procedure Osq13 (Var OCURS : byte64;
Var OSQLDCA : byte64); EXTERN;

Var Osqlstmt : string400;
OsqlLen : integer); EXTERN;

Oposition : integer;
Var Obuffer : string20;

Obufl : integer;
Of type : integer) ; EXTERN ;

Procedure Odfinn (Var OCURS : byte64;

Procedure Oexec (Var OCURS : byte641 ; EXTERN;
Procedure Of etch (Var OCURS : byte641 ; EXTERN;
Procedure Oclose (Var OCURS : byte641 ; EXTERN;
Procedure Ologof (Var OSQLDCA : byte64); EXTERN;
Procedure Oermsg (Var OCURS : integer;

Var Xsgbuf : etriag120) ; EXTEREU;

Procedure Error0 (m, n : integer);
Var

Page 22

i : integer;
mag : string120;
err : TEXT;

for i := 1 to 120 do
msg [i] := ’ ’;

Oermsg (n, msg) ;
open (err, ’erro . dat ’ , new) ;
rewrite (err) ;
Writeln (err, ’Error occurred during ORACLE ’1;
case rn of

Begin

1 : writeln (err, ’OPEN ’ ,mag);
2 : writeln (err, ’LOGON ’ , rnsg);
3 : rriteln (err, ’SQL ’ , rnsg);
4 : rriteln (err, ’DEFINE ’ , msg) ;
5 : writeln (err, ’FETCH ’, msg);
6 : writeln (err, ’EXECUTE ’ , rnsg);

end;
close (err);

End ;

Procedure ErrorD (n : integer) ;
Var

Begin
err : TEXT;

write (’Error during DAVID ’1;
Case n of

1 : writeln (err, ’gsql conncet’);
2 : writeln (err, ’gsql run’);
3 : writeln (err, ’gsql compile’);
4 : writeln (err, ’gsql evaluate’);
5 : writeln (err, ’assign cluster’);
6 : writeln (err, ’bind column’);
7 : writeln (err, ”);
8 : rriteln (err, ’assign subcluster’);
9 : rriteln (err, ”) ;
10 : writeln (err, ’assign subcluster row’);
11 : writeln (err, ’deassign cluster’) ;
12 : writeln (err, ’gsql drop’);
13 : writeln (err, ’ log off’);

end ;
end ;

Procedure Build-Query;
Var

i, j , k : integer;
temp : string20;

k := 1;
Begin

Page 23

QBEGINOQUERY temp := ’QOQUERY’;
f o r j := 1 t o 20 do begin Query [k] := temp [j] ; k := k + 1 ; end; QENDOQUERY
QBEGINCLUSTER
k := 1;
OBEGINDEF temp := ’QDEF’;
f o r j := 1 t o 20 do begin DefineQl[k] := temp [j] ; k := k + 1 ; end; QENDDEF
OENDCLUSTER
f o r i := 1 t o 132 do write (query [i]) ; wr i t e ln ;

End ;

Procedure Convert (var f : t e x t ; t : s t r ing20) ;
var

i , j , k , m, n, num : i n t ege r ;
need : boolean;

i :” 1; need := t r u e ;
while (t [i] = ’ ’) do i := i + 1 ;
while (i <= 20) and need do begin

Begin

if not (t [i] i n [’0’..’9’]) then need := f a l s e ;
i := i + 1 ;
end ;

i := 1 ; k := 0; num := 0;
i f need then begin

while (t [i] = ’) do i := i + 1;
f o r j := 20 downto i do begin

num := num + (ord (t [j]) - ord (’0’)) * 10 ** k;
k := k + 1;
end ;

write (f , num : 6);
end

e l s e begin
m := 20; while (t [m] = ’) do m :E m - 1; write (f , ’ ’) ;
i f (m > 10) then f o r n := 1 t o 20 do write (f , t [n])
else f o r n := 1 t o 10 do write (f , t [n]) ;
end;

end ;

Begin
duid := pail (u id , ’ , 10);
dpwd := pad (pwd, ’ ’ , l o) ;
Build-Query ;
Olon (SQLDCA, UidPwd, 16) ;
I f (CURS [l] <> 0) Then Error0 (1, CURS 111)
Else Begin -I

OOpen (CURS, SQLDCA) ;
If (CURS 113 <> 0) Then ErrorO (2, CURS 111)
Else Begin

Osq13 (CURS, Query, 400);
I f (CURS [l] <> 0) Then ErrorO (3 , CURS [11)

Page 24

Else Begin
QBEGINSVAR ODFINN (CURS, Q1, sQSVAR, 20, 1); OENDSVAR
If (CURS [ll <>O) Then ErrorO (4 , CURS [l])
Else Begin
gsql-connect (duid, dpwd, pvca, viewname) ;
if (vca. code < 0) then errord (1)
else begin
QBEGINCLUSTER
gsql-run (vca, DEFINEQi , flag, RESULTQI) ;
if (vca. code < 0) then errord (2)
else begin
asgcluster (vca, cQ1, RESULTQI, 'W');
if (vca. code < 0) then errord (5)
else begin OBEGINTABLE
tablename := 'QTABLENAME'; QBEGINCOLUMN column := 'OCOLUMN';
bindcolumn (vca, cca, tablename, column, rQRVAR,OTYPE, OLENGTH) ;
if (vca. code < 0) then errord (6) else begin OENDOLUMN QENDTABLE
geqldrop (vca, pgca) ;
if (vca. code < 0) then errord (12)
else begin
asgsubcluster (vca, cca, scca, RESULTQI);
if (vca. code < 0) then errord (8)
else begin
open (fQ1, 'fQl.dat', new) ; rewrite (fall); QENDCLUSTER
OExec (CURS) ;
If (CURS [l] <> 0) Then ErrorO (5, CURS [11)
Else Begin
Repeat
OFetch (CURS) ;
if (CURS [l] <> EndofTable) then begin
QBEGINCLUSTER OBEGINTABLE QBEGINCOLUMN
rQRVAR := sQRVAR; convert (fQ1, sQRVAR);
OENDOLUMN QENDTABLE writeln (fQ1) ;
scrinsert (vca, cO1, sO1) ;
if (vca. code 0) then begin
rollback (vca) ;
errord (10);
end;
QENDCLUSTER
end;

Until (CURS [l] <> 0) or (CURS [i] = EndOfTable)
or (vca. code < 0);

end ; - I

QBEG I N CLUSTER
end;
ciose (f a i l ; end;
QBEGINTAkLE QBECINCOLUMN end; QENDOLUMN QENDTABLE
end ;

Page 25

deasgncluster (vca, pcca)
if (vca. code < 0) then errord (11);
end ;
OENDCLUSTER

end;
logoff (duid, pvca , viewname) ;
if (vca. code < 0) then errord (13);
End ;

End ;
End ;

End ;
OClose (CURS) ;
OLogof (SQLDCA) ;

End.

.

